V_{DRM}	=	6000	V
I _{tgqm}	=	3000	Α
I _{TSM}	=	24	kΑ
V _{T0}	=	1.70	V
r _T	=	0.60	mΩ
V_{DClin}	=	3800	V

Gate turn-off Thyristor **5SGT 30J6004**

Doc. No. 5SYA 1212-04 Aug. 2000

- Patented free-floating silicon technology
- Low on-state and switching losses
- Annular gate electrode
- Industry standard housing
- Cosmic radiation withstand rating

The 5SGT 30J6004 is an 85 mm buffered layer, Transparent Emitter (non-shorted anode) GTO with exceptionally low dynamic and static losses and gate drive requirements. Housed in an industry-standard 108 mm wide housing, it is ideally suited for high reliability applications such as Transportation and Medium Voltage Drives.

Blocking

	<u> </u>					
V_{DRM}	Repetitive peak off-state voltage		6000	V	$V_{GR} \geq 2V$	
V_{RRM}	Repetitive peak reverse voltage		17	V		
I _{DRM}	Repetitive peak off-state current	\leq	100	mA	$V_{D} = V_{DRM} \qquad \qquad V_{GR} \geq 2V$	
I _{RRM}	Repetitive peak reverse current	\leq	50	mA	$V_{R} = V_{RRM}$ $R_{GK} = \infty$	
V _{DClink}	Permanent DC voltage for 100 FIT failure rate		3800	V	$-40 \le T_j \le 110$ °C. Ambient cosmic radiation at sea level in open air.	

Mechanical data (see Fig. 19)

F _m	Mounting force	min.		36	kN
		max.		44	kN
А	Acceleration:				
	Device unclamped			50	m/s² m/s²
	Device clamped			200	m/s²
М	Weight			1.3	kg
Ds	Surface creepage distance		\geq	33	mm
Da	Air strike distance		\geq	15	mm

GTO Data On-state

011-518						
I_{TAVM}	Max. average on-state current	1030 A	Half sine wave, $T_c = 70 \ ^{\circ}C$			
I _{TRMS}	Max. RMS on-state current	1620 A				
I _{TSM}	Max. peak non-repetitive	24 kA	$t_{P} = 10 \text{ ms} \text{T}_{j} = 110^{\circ}\text{C}$			
	surge current	40 kA	$t_P = 1 \text{ ms}$ After surge:			
l ² t	Limiting load integral	2.88·10 ⁶ A ² s	$t_{\rm P}$ = 10 ms $V_{\rm D} = V_{\rm R} = 0V_{\rm R}$			
		0.80.10 ⁶ A ² s	$t_P = 1 \text{ ms}$			
V _T	On-state voltage	3.50 V	I _T = 3000 A			
V_{T0}	Threshold voltage	1.70 V	I _T = 400 - 4000 A T _j = 110 °C			
r _T	Slope resistance	0.60 mΩ				
I _H	Holding current	100 A	$T_j = 25 °C$			

Gate

Oute						
V_{GT}	Gate trigger voltage	1.2 V	V_{D}	= 24 V	T _j = 25 °C	
I _{GT}	Gate trigger current	1.0 A	R_A	= 0.1 Ω		
V_{GRM}	Repetitive peak reverse voltage	17 V				
I _{GRM}	Repetitive peak reverse current	20 mA	V_{GR}	= V _{GRM}		

Turn-on switching

di/dt _{crit}	Max. rate of rise of on-state	400 A/µs	f = 200Hz	$I_{T} = 3000$	0 A,	T _j =	110 °C
	current	800 A/µs	f = 1Hz	I _{GM} = 25	A, di _c	∋/dt ⊧	= 25 A/µs
t _d	Delay time	2.5 µs	V _D =	$0.5 V_{\text{DRM}}$	T_j	=	110 °C
t _r	Rise time	5.0 µs	I _T = 30	A 000	di/dt	=	300 A/µs
t _{on(min)}	Min. on-time	100 µs	I _{GM} =	25 A	di _G /dt	=	25 A/µs
Eon	Turn-on energy per pulse	2.50 Ws	C _S =	3μF	R_{S}	=	10 <u>Ω</u>

Turn-off switching

I _{TGQM}	Max controllable turn-off	3000 A	$V_{DM} = V_{DRM}$	di _{GQ} /dt	=	70 A/µs
	current		$C_S = 3 \mu F$	L_{S}	\leq	0.2 µH
t _s	Storage time	25.0 µs	$V_D = \frac{1}{2} V_{DRM}$	V_{DM}	=	V _{DRM}
t _f	Fall time	3.0 µs	$T_{j} = 110 \ ^{\circ}C$	di _{GQ} /dt	=	70 A/µs
t _{off(min)}	Min. off-time	100 µs	I _{tgq} = I _{tgqm}			
E _{off}	Turn-off energy per pulse	16.0 Ws	$C_S = 3 \mu F$	R_{S}	=	10 <u>Ω</u>
I _{GQM}	Peak turn-off gate current	900 A	$L_{S} \leq 0.2 \ \mu H$			

Therma	al		
Tj	Storage and operating	-40110°C	
	junction temperature range		
R_{thJC}	Thermal resistance	22 K/kW	Anode side cooled
	junction to case	27 K/kW	Cathode side cooled
		12 K/kW	Double side cooled
R_{thCH}	Thermal resistance case to	6 K/kW	Single side cooled
	heat sink	3 K/kW	Double side cooled

Analytical function for transient thermal impedance:

Z thJC (t) =
$$\sum_{i=1}^{4} R_i (1 - e^{-t/\tau_i})$$

i	1	2	3	4
R _I (K/kW)	5.4	4.5	1.7	0.4
τ _i (s)	1.2	0.17	0.01	0.001

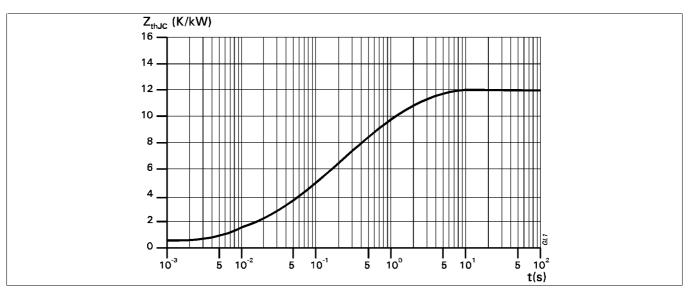


Fig. 1 Transient thermal impedance, junction to case.

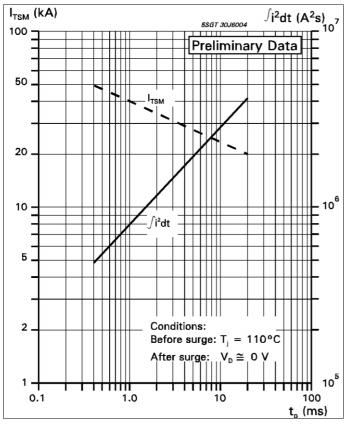
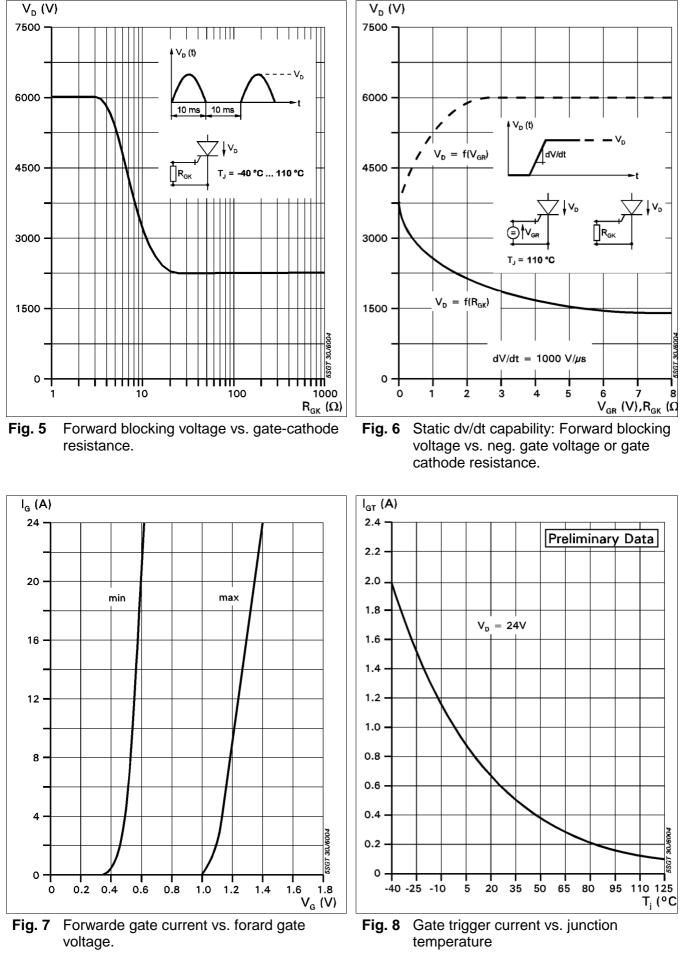
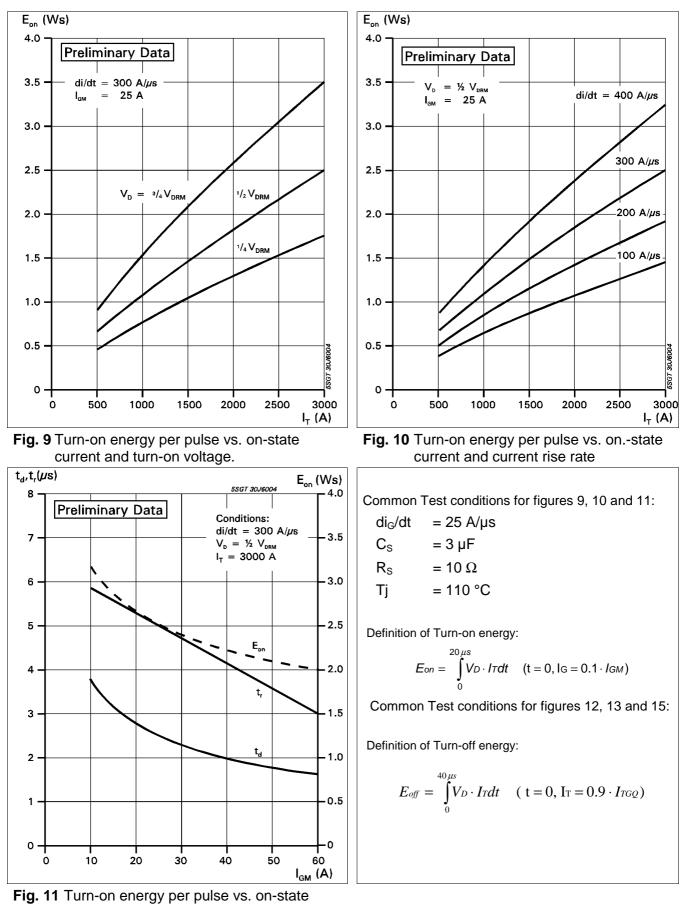




Fig. 4 Surge current and fusing integral vs. pulse width

current and turn-on voltage.

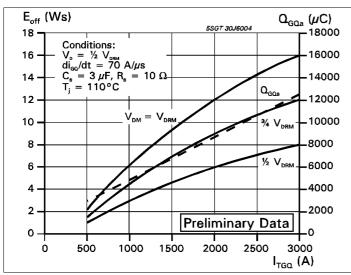
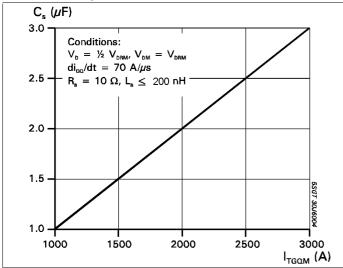
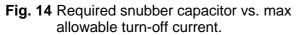




Fig. 12 Turn-off energy per pulse vs. turn-off current and peak turn-off voltage. Extracted gate charge vs. turn-off current.

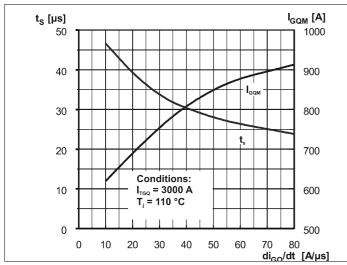


Fig. 16 Storage time and peak turn-off gate current vs. neg. gate current rise rate.

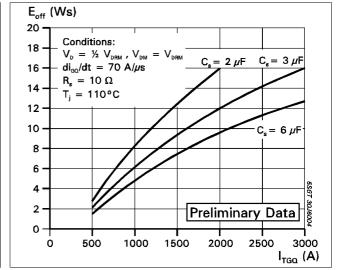
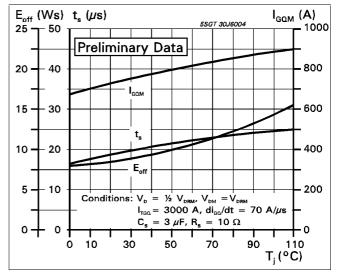
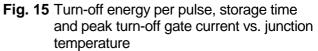




Fig. 13 Turn-off energy per pulse vs. turn-off current and snubber capacitance.

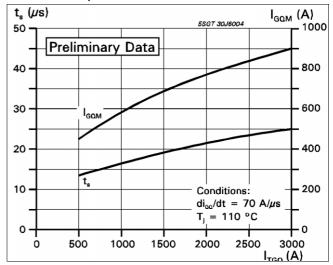


Fig. 17 Storage time and peak turn-off gate current vs. turn-off current

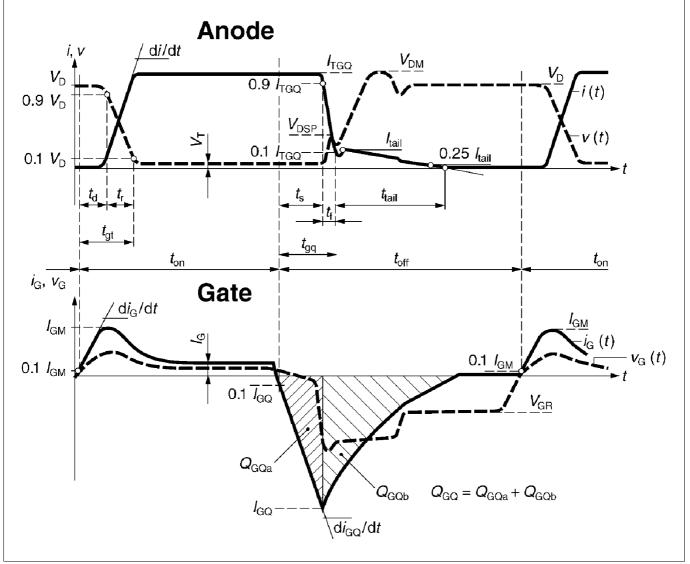


Fig. 18 General current and voltage waveforms with GTO-specific symbols

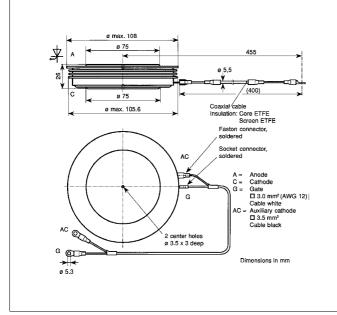


Fig. 19 Outline drawing. All dimensions are in millimeters and represent nominal values unless stated otherwise.

Reverse avalanche capability

In operation with an antiparallel freewheeling diode, the GTO reverse voltage V_R may exceed the rate value V_{RRM} due to stray inductance and diode turn-on voltage spike at high di/dt. The GTO is then driven into reverse avalanche. This condition is not dangerous for the GTO provided avalanche time and current are below 10 µs and 1000 A respectively. However, gate voltage must remain negative during this time. Recommendation : $V_{GR} = 10...15$ V.

ABB Semiconductors AG reserves the right to change specifications without notice.

ABB Semiconductors AG Fabrikstrasse 2 CH-5600 Lenzburg, Switzerland

 Tel:
 +41 (0)62 888 6419

 Fax:
 +41 (0)62 888 6306

 E-mail
 info@ch.abb.com

 Internet
 www.abbsem.com

Doc. No. 5SYA 1212-04 Aug. 2000